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I. Introduction

The impact of errors in measurement of the market rates of return

and the risk-free rate on the estimated beta coefficient of the capital

asset pricing model (CAPM) has been studied in detail by Roll (1969) and

Lee and Jen (1978) . They have shown that the measurement errors gener-

ally bias the estimated Jensen's perfoirmance measure and the estimated

systematic risk. They have also used the biases of both Jensen measure

and systematic risk induced by the measurement errors to interpret Friend

and Blume's (1970) results, i.e., there exist some evidence on non-zero

covariance relationships between the estimated Jensen performance measures

and its risky proxy. Specifically, the inconsistency of the bias (non-

zero covariance) associated with the estimated composite performance

measures in two subperiods can be explained by examining the effect of

the measurement errors on the estimated systematic risk, average market

rates of return and risk-free rate. However, the effect of measurement

errors on the estimates of the parameters associated with the two-factor

model has not been explicitly investigated in their study. It is the

main purpose of this paper to extend Lee and Jen's study to the two fac-

tor model. It is shown that both estimated alpha and beta coefficients

are not free from the bias caused by the measurement errors associated

with both market rates of return and the return on the minimum-variance

zero beta portfolio. It is also shown that the measurement errors of

market rates of return and zero-beta factor can lead to a biased repre-

sentation (or ranking) of the estimated Jensen's and Treynor's perfor-

mance measures. Furthermore, the effect of the measurement errors in-

duces additional ambiguity shown by Roll (1978) that inconsistent ranking
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may arise in performance evaluation of portfolios (or assets) when dif-

ferent indices are used as proxies for the market portfolio.

In the second section of this paper, the effect of measurement

errors on the estimates of alpha and systematic risk, derived from the

two-factor model is studied. In the third section, the measurement

errors and the estimated Treynor's measure are discussed in detail. In

the fourth section, the impact of the measurement errors on Jensen's

measure is investigated. Finally, the results of this study are summar-

ized in the fifth section.

II. Measurement Errors and Estimated Alpha and Beta Coefficients

Black (1972) has developed a two-factor model describing the equili-

brium structure of security (or portfolio) returns. The model is repre-

sented by the following equation:

E(R.^) =E(R^^) +e.[E(R^^) -E(R^^)]; (1)

where
^-t

~ ^^^ return on security (or portfolio) j in period t,

R = the return on the minimum-variance zero beta portfolio
in period t,

R = the return on the market portfolio in period t,

and E indicates the mathematical expectation of a random variable.

In their empirical study. Black, Jensen and Scholes (1972) have shown

that the following time-series equation of (1) provides a better descrip-

tion for the behavior of security (or portfolio) returns:

R^^ - ^.^ = a. + g.(R , - R ,) + e.^,
Jt zt J J mt zt' jt*

(2)
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where a. and 3. are assumed to be stationary over time, and e. is
J J Jt

assumed to be normally, independently distributed with mean zero and

2 2
variance a ,NI(0,a ), and is independent of R . The effect of measure-

e e mt

ment error on the estimates of a. and 3. associated with the two-factor
J J

model in (2) is studied in the following section.

1. Measurement Error on R
mt

We first investigate the impact of measurement error on R on the

systematic risk estimate, t . . Following Lee and Jen's (1978) results,

a model specifying the measurement error on R can be defined as

where R* = the return on a proxy for the market portfolio, say the
return on the New York Stock Exchange price index or Standard
and Poor's composite index;

n is random„measurement error of R , and is assumed to be
NI(0,a ); and t is a constant.

Using equation (3), the two-factor capital asset pricing model (CAPM)

in (2) can be rewritten into the equation

R.^ - R ^ = a. + e.[(R', + r + r\) - K J + e_ (4)jt zt J J mt t zt jt

where n is assumed to be independent of e. , R^ , R ^, and R ^. Then
t Jt jt mt zt

the ordinary least-squares (OLS) estimators of 3. and a. can be written

respectively as

Lee and Jen (1978) have a brief discussion of measurement error on R
induced by using a market index as a proxy for the market portfolio.

2
See Appendix (A) for the derivative of equations (5) and (6)

.
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•' • o+o+a -•

m n z

and <,=»!-
<=J

- 2 ^2" 2><\ ' "z)' ">
m n z

— — — 2 2
where R = R* + x + n; the bars indicate the sample averages; a and amm "^ m z

are the variances of R and R ^, respectively; and s., the sample vari-
mt zt J

2
ation of g., is assumed to be distributed with mean zero and variance a .

J s
A

Equation (5) indicates that the estimated systematic risk, g.,

consists of three components: the ex-ante systematic risk, 3., the

2
a

sample variation of g., and the bias, ^ "^ j , induced by the
^ a + a + o

m n z

measurement error on R . If there exists no measurement error on R ^mt mt

the estimated systematic risk contains &. and its sampling variation,

s.. This implies that the estimated systematic risk is influenced only

by the sampling variation of g.. However, as equation (5) indicates,

the measurement error on R will have a significant impact on the esti-

mated systematic risk. The reason is as follows: The estimated system-

atic risk of a security Cor portfolio) with a positive beta coefficient

B. will be biased downward since the bias becomes negative. On the other

hand, the estimated systematic risk of a negative-beta-coefficient secur-

ity (or portfolio) is upward biased, for the bias is positive. Similarly

the estimated alpha (or Jensen's performance measure), a., is upward

(downward) biased for a security (or portfolio) with a positive (negative)

beta coefficient if (R - R ) is positive. Therefore, the measurement
m z

3 — —
A reverse conclusion is expected if (R - R ) is negative.

TTl 7-
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error on the market rate of return could lead to an upward or downward

bias in the estimated systematic risk and the estimated alpha.

2. Measurement Error on R
zt

Black, Jensen and Scholes (1972) (hereinafter, BJS) have derived a

technique to measure the return on the minimum-variance zero beta port-

4
folio. The BJS estimate of R is defined as

zt

where N = the number of securities (or portfolios) used to estimate R ,

N
w = (1 - B )2/ Z (1 - B )^,

R . = the estimate of R based on the return on security (or port-
zit c ^J \ zt
• folio) J

R., - e.R ^
- '

I - ,j

"^
- ^j,. -d (8)

Jt 1 - Bj

Note that R . defined in (8) depends on R . Whenever R is measured
Zjt ^ / r

jjjj. ^^

with error, the BJS estimator in (7) will not be free from the bias in-

duced by the measurement error on R . This can be shown as follows:
mt

using equations (3), (7) and (8), a model specifying the measurement

error on R can be derived as
zt

\t = ^it ^ ^ ^ \' ^'^

4
BJS have shown that the estimate of R defined in (7) is unbiased
and approximately efficient with a minimum error variance.
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N R.^ - B.R'

Where r;^ = z „ (J^_^ + .;^),
j=l "

J
"

= the weighted average of the estimates of R based on the
returns on N securities (or portfolios)

,

N 6.T

A = Z v.(r.—^), T is defined in (3), and

N 6 n^
(5 = S w, (-:—"^

—

—) , is distributed with mean zero and
' j=l ^ ^ " ^j

variance a..

If R ^ is measured without error, t = and n^ = 0. Then, R ^ = R' for
mt t zt zt

A = and 6=0. Substituting equation (9) into equation (4) gives a

general form of the two-factor CAPM:

^jt
-

^^zt
+ A + 6^) = a. + B.[(R;^ + t + n^) - (R;^ + A + 6^)] + c.^. (10)

2 2 2 5
where (n^ - 6^) "^ N(0,o,), a, = o (1 + c - d)

,

t t X 1 n

N w^e^ N W.6.
c = Z ^. d = Z (^)

,

j=l (l-6.)2 j=l ^ ^j

E(n^.e^,.) = 0, E(6^e ) = 0, and

n^ and & are independent of R and R ^.
t t mt zt

Following a similar analysis of deriving equations (5) and (6), the OLS

estimators of 3. and a in equation (10) can be expressed respectively
J J

6
as

5 2 2 2 2 2
Var(ri^ - <S^) = a + a. - Cov(n^,6^) =a +ac-ad

t t' n <5 t' t' n n n

2 2 2 2
= 0^(1 + c - d) where a. = Var(6^) = c c and Cov(n ,<S^) = a d.

n t n t t n

See Appendix (B) for the detailed derivation.
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e! = e. + ^. + s. (11)
J J J J

and a^ = Oj + (4-^
- s^)(R^ - R^)

,

(12)

ohdil + 23) - 3. - c(l + 6.)]
where i|^ = -^ ^ ^

J

—

(13)

m z 1

= the effect of measurement errors

_ _ _ _ N _ n

R = R' + A + 6, R' = Z R* /n, and 6 = Z 6^/n.
" " " t=l

"^
t=l

'^

As indicated by (11), (12), and (13), the measurement errors on both R ^mt

and R induces the bias (i)j.) in estimating g. and a.. The behavior of
2t J J J

the bias caused by the measurement errors is difficult to analyze.

However, it can be concluded that the estimates of g. and a. are upward
J J

or downward biased, depending on whether the bias, \\)
.
, is positive or

negative. The 6. and a. are over-estimated if the bias is positive;
J J

otherwise, they are underestimated. The above analysis has indicated

that the measurement errors on either R or R (or both) have a signi-
mt zt

ficant impact on the estimated systematic risk, and the estimated alpha

g
(or Jensen's measure). As a consequence, the estimated Treynor's and

the estimated Jensen's performance measures are affected by the measurement

If R^ and R are not measured with errors (Rw^. = RJ.^ and R = R^r^'

equations (11) and (12) become 6! = g, + s. and a!=a. -s.(R -R),
_ n -^ _ri

respectively, where R = E R /n and R = E R ^/n.
m _.. mt z zt

g
If R is measured independently of R and equation (9) correctly

specifies the measurement error on R , then the results obtained in
z t

this section is still„valid. The only result needed to change is

Var(n^ - &J = o +0- since Cov(n^,6,) = 0.
t t n t t
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errors on R and R . However, the estimated Sharpe's performance mea-
mt zt r r

svire is not influenced by the measurement errors on R„^ and R„^ because' mt zt

it does not depend on the use of proxies for R ^ and R ^. In the'^ mt zt

follovd.ng two sections, the effect of the measurement errors on the esti-

mated Treynor's and the estimated Jensen's measures is investigated.

III. The Effect of Measurement Error on Treynor's Performance Measure

To study the effect of measurement error on the ranking of Treynor's

measure, the expected value of the estimated Treynor's measure derived

from the two-factor model is obtained first and shown to be biased,

Chen and Lee (1979) have derived the expected value of the estimated

Treynor's measure associated with the Sharpe-Lintner CAPM. Following

a similar analysis, the expected value of the estimated Treynor's measure

associated with the time-series equation of the two-factor model defined

in (2) can be easily shown to be

^ - "^z ^ - ^ 9E(-U -) = i-^. -) • e-,'' (14)

3. ^J

where R. and R are assumed to be normally, independently distributed,

3. is the least-squares estimate of the systematic risk, g., and
is assumed to take value in a positive range, say from .0001
to 12,-^"

9
For the detailed derivations of (14) and (15), see Chen and Lee (1979).

The estimated_Treynor^s measure is the ratio of two normal random
varibles (R. - R ) and g . . This ratio has no finite moments, for the

a. in the nnmerator of the estimated Treynor's measure can take value zero,
since all portfolios have positive betas and very few securities have
negative betas; it is reasonable to assume that betas take positive values
only. The truncated value of 3. in a positive range will assure the
existence of the expected value-* of the estimated Treynor's measure. For
a detailed discussion of the ratio of two normal random variables, see
Hinkley (1969).
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y. = E(R.^). y, =E(R^^), R. = ^Z^ R.^/n.

—'—

T

= ex-ante Treynor's measure.

^i
"

''g k ^ k k-£

^j gv^(m*a- + B .) k=0 ^*''3 ^ ^j £=1
'

2(m)/2^(^^^^3^
(15)

g = f(B.)d3., f(S.) = the probability density function of B.,

m.

2 lL±Ji. 1
•
^ o -

^' X 2
-x/2

a.2 r(l^)2(^^l)/2
dx.

a =

a- 6 b - 6

o„ = /Var(L), and m* = j(a' + b').

Equation (14) indicates that the sample representation of ex-ante Treynor's

measure, (R. - R )/B., is not an unbiased estimator. And the bias factor,
J z J

e , in (15) associated with the expected value of the (R - R )/&. is
p^ J 2 J

xmique to a given security (or portfolio). Thus, the ranking of Treynor's

measure based on the sample estimate, (R. - R )/6., is not an unbiased

representation of the ranking of ex-ante Treynor's measure. In other

words, the ranking of Treynor's measure based on the order of the magni-

tudes of (R. - R )/B. will be biased. The implication of this result is
J z J

11
R. - R

Note that (—^—= )/^o Is t^°^ ^h unbiased estimator of (u, - y )/B.
6. ^j J z j

since e. involves unknown parameter S..
3

'^

J
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that some portfolios may be evaluated favorably while others unfavorably.

Furthermore, the measurement errors on R and R ^ can seriously affect* mt zt

the ranking of Treynor's measure. This can be demonstrated analytically

as follows: following a similar analysis as en5)loyed by Chen and Lee

(1979), it is easy to show that the expected value of the estimated Treynor's

measure associated with the measurement errors on R and R can be
mt zt

written as

0j
^j ^ "^j ^j

e . + * . S. 3j

where u^ = E(R^) = E(R^ - A - fi") = u^ - A, u^ = ^^V ' ^j " ^j "^
'''j

by equation (11), and e., is defined in (15) with replacing
p .

12 ^

6j by 6'.^^

If there exist no measurement errors on R and R , equation (16) reduces
mt zt* ^

to equation (14) since 4*. = 0, A =» 0, and B'. '^ B.. However, the comparison

of (16) with (14) indicates that the measurement errors on R ^ and R ^mt zt

increase the biaaedness of the estimated Treynor's measure, (R. - R')/S'..

This will influence the ranking in a great degree. Moreover, equation

12 ^i
" ^z

To enable E(—^r ) having a finite value, the distribution of 3! is

also truncated in a positive interval.
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(16) can be used to show that the ranking of Treynor's measure can be

inconsistent if different (market) indices are used to estimate systematic

risks, 6.. Different (market) indices used as proxies for the market

portfolio are associated with different degrees of measurement error. This

implies that for a given index used there is an estimated systematic risk for

each asset (or portfolio), and hence an estimated Treynor's measure for the

asset (or portfolio) . Therefore, an asset (or portfolio) may be evaluated

more favorably than some other assets (or portfolios) for a given index

used. On the other hand, this evaluation result may be be reversed if

another index is used. This can be shown in the following.

To simplify the analysis, we let the measurement errors on R and

R be specified by equations (3) and (9), respectively, with t = and

A = 0. Assume that two portfolios (or assets) i and j are to be evaluated.

Then, a market index is chosen as a proxy for the market portfolio.

Suppose that based on the market index chosen the estimated Treynor's

measure of portfolio j, T'. , is greater than that of portfolio i, T'.

Then, the expected difference, E(T' - T!), is positive. Using equation

(16) gives the equation

< E(T! - Tp = D(T. - T^ (17)

A A

where T' = (R. - \) I ?'\ . '^[ = (R^ - \y
^'i_y

T. = [E(R.)-E(R )]/6. = the ex-ante Treynor's measure of portfolio j,
J J 2 J

T, = [E(R, )-E(R )]/B. = the ex-ante Treynor's measure of portfolio i,
1 i z 1
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e^i and e„ , are defined in (15) with appropriate subscripts.
^j ^i

Now, suppose that a second index is used for the performance evaluation

of portfolios i and j. Then, by analogy of equation (17), one obtains

A A

E(T* - T*) = D*(T. - T^) (18)

where T* = (R. - R*)/B*

= the estimated Treynor's measure of portfolio j with 3*

calculated against the second index. "*

T* = (R^ - R*)/6*

= the estimated Treynor's measure of portfolio i with 3*

computed against the second index,

R* = the average return of R associated with the second
index used,

Tf =
( -J ) _ ( i

—

)

S. +^*^ ^3^ +^*^*

\l)*
= the bias caused by the use of the second index in estimating

3^, and

3* = 3. + tl*^.

J J J

Using equation (17) , equation (18) can be rewritten as

E(T* - T*) = ^ • E(TJ - Tp. (19)
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If there exist no measurement errors on the both indices used, equation

(19) becomes E(T* - T*) = E(T! - Tp > 0; and hence T* > T*
"'"^ the ranking

remains unchanged. The implication of this result is that if two indices

are chosen such that their measurement errors are negligible, the effect

of the measurement errors will not significantly affect the estimated

systematic risk associated with each index, and hence the estimated

Treynor's measures. As a result, the ranking of Treynor's performance

measure would be consistent if such two indices are selected. Therefore,

judicious choice of indices (with insignificant measurement errors) will

produce consistent ranking of performance evaluation.

Note that if a selected index (R' ) is mean-variance efficient, the
mt

models specifying the measurement errors on R and R in (3) and (9)
mt zt

becomes respectively as

and

R . = R • + T (20)
mt mt

\t =
^it ^ ^ ' <21)

for a mean-variance efficient index contains no unsystematic variation

(nt = = (St) in accordance with capital market equilibrium theory.

14
Then, equations (5) and (11) are equal.

13
If there exists no measurement error, then \b . = t. = ii* = t* = 0. Thus,

1 J i j

h
= I*, l[ = ll, e^ = e* = B.. e^, = e^,, eg, = e^,. R^ = R*,

e — e J J

6* 6*

^ = = 1, and hence T. = t! > T! = T*.
D e , - e ,

'
J J i i

J i

14 2
This result is clear since o =0 and \ii . = 0.

n J
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&. = e! = 6. + s. . (22)
J J J J -

Thus, the systematic risk computed against a mean-variance efficient index

is always equal to the ex-ante systematic risk, (g.) plus the sampling

variation of B.. Following footnote 13, this result implies that rank-

ing of the estimated Treynor's measure based on an efficient index would

be consistent with that based on another efficient index.

However, it can be shown that the measurement errors on both indices

chosen can lead to inconsistent ranking of Treynor's measure. If either

D or D* of equation (19) becomes negative, then E(T* - T*) < 0. Under

this circumstance, the expected ranking of the performance of portfolios

i and j is reverse, for E(T*) < E(T*). The implication of the

reverse expected ranking is that some realization of T* is very likely

to be less than that of T*. Specifically, due to the effect of the

measurement errors, portfolio j can be evaluated to be inferior to port-

folio i, a reverse ranking. Therefore, inconsistent ranking of the esti-

mated Treynor's measure may arise if different indices are used for the

performance evaluation of portfolios (or assets)

.

IV. The Effect of Measurement Error on Jensen's Performance Measure

In this section, the estimated Jensen's performance measure is shown

to be biased if there exist measurement errors on R and R . Then,
mt zt

it is shown that the estimated Jensen's measure can also produce incon-

sistent ranking of the performance of portfolios (or assets) if different

indices are used. The inconsistent ranking can be explained by exploring

the effect of the measurement errors on R and R . The biasedness of
mt zt

the estimated Jensen's measure is first studied in the following manner.
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We have knoiiTi that the estimated Jensen's measure, a!, is defined
J

in (12) if there exist measurement errors on R and R . Taking the
mt zt ^

expected value of (12) , we obtain

E(aj) = ci^ + '^j(P^ - y^^' ^2^^

where y =E(R )=u'+T,y =ii'+A, and E(s.) = 0.
Q mt m z z j

If there exist no measurement errors on R and R ^ equation (23) becomes
mt zt ^

E(a!) = a. since il;. = 0. Then, the estimated Jensen's measure is an unbiased
J J J

estimate of ex-ante Jensen's measure, a.. Thus, the ranking of the perfor-

mance of portfolios (or assets) based on a! is an unbiased ranking of

Jensen's measure. However, as indicated by (23), if there exist measure-

ment errors on R and R ^, the estimated Jensen's measure is biased with
mt zt'

15
a bias factor, i|j . (p - y ). The expected value of a! is biased upward

J m z j

or downward, depending on ii . and the expected excess market return, y - y .

Under the market condition of y being greater than y , the E(a!) is biased
m z J

upward (downward) for a positive (negative) ij; . which represents the effect

of the measurement errors. If y is less than y , the E(a!) is biased

downward (upward) for a positive (negative) effect, ^ . Therefore, if

there exist measurement errors on R and R , the ranking based on the
mt zt °

magnitudes of a', will not be an unbiased representation of the true
J

ranking of Jensen's performance measure.

The choice of different indices as a proxy for the market portfolio

is critical to the consistency of the ranking of Jensen's performance

For a similar reason as indicated m footnote 9, [a' - U/.(y - y )] can
, 1,1. - 1 1 m z

not be an unbiased estimator ol a..
J
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measure. Suppose that a (market) index is used for the performance eval-

uation of portfolios i and j. Let the estimated Jensen's measures,

associated with the chosen index, of portfolios i and i be a! and a!,
i J

respectively, such that al > a! > 0. Then, using equation (23) it can

be shown that

< E(a^ - ap = (a^ - a^) + (i^;^ + ^^)iv^ - V^) . (2A)

Now, suppose that another index is used for the purpose of performance

evaluation. Then, the expected value of the difference between the esti-

mated Jensen's measure of portfolio j, a!, and that of portfolio i, a',

based on the second index can be written as

E(aj - a|) = (a^ - a^) + (i|»* - ^*) (m^ - V^), (25)

where 4** and ij^* represent the effects of the measurement errors induced

by the second index in estimating Jensen's measures for portfolios j and

i, respectively. Using equations (24) and (25) gives

£(;• - ;•) = (a. - a.) +^i-A[E(;' - ;.) - (a. - a^) ] . (26)

If the relative differential effect, i^* - \p*) / i^ . - ''l'^), of the measure-

ment errors on both chosen indices is negative, an inequality relation

can be established by using (26)

:

E(a! -a') < (a. - a .)
[^jJ--^ - 1]

,

(27)
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H r- ' ECo- - a!) < in (26). If a. is less than a^ , then
^. - ^^ J i 2 1

E(al - a') < 0. This result implies that if the relative differential

effect of the measurement errors is negative, the estimated Jensen's

measure of portfolio j, al, is likely to be less than that of portfolioAAA A A

i, a* for E(al) < E(a!). In this case, the ranking of a! and a! is not

A A

identical to the ranking of a! and a!. Thus, the above analysis has

shown that the effects of the measurement errors associated with different

indices used in performance evalioation can produce inconsistent ranking

of Jensen's performance measure. This finding adds to the problem as-

sociated with Roll's (1978) finding that ambiquity arises in performance

evaluation when Jensen's measure is estimated by return generating models

associated with different indices used as proxies for a common generat-

ing factor.

It should be noted that if two chosen indices have no (or insigni-

A A A A

ficant) measurement errors, then E(a! - a') = E(a' - a') and

A A A A

a! = a! > a' = a!. Thus, the ranking of Jensen's performance measure is
J J i 1 '

consistent despite different indices are used for performance evaluation.

Moreover, if a chosen index is mean-variance efficient, following equa-

tions (20) and (21), it can be shown that equations (6) and (12) are

identical

a. =a!=a. -s.(R -R). (28)

In fact, following (21), it is reasonable to assume that a. > a. though
the order of the magnitudes of a. and a is not known.
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Thus, the estimated Jensen's measure (a.) is always ex-ante Jensen's

measure (a.) minus the sampling variation of 3. times the average ex-

cess market return, (R - R ) if a selected index is mean-variance
m z

efficient. As a result, if two chosen indices are mean-variance effi-

cient, equations (24) and (25) are equal:

< E(aJ - a|) = E(a^ - ap = a^ - a^ , (29)

since n = 6 =0 and hence ^. = if . = 4^* = 'I'* = 0. Equation (29) implies
t t i J J 1

that ranking of Jensen's measure is consistent for different mean-

variance efficient indices used as proxies for the market portfolio.

V. Summary

The measurement errors on both market rates of return and the return

on the minimum-variance zero beta portfolio have been shown to have a

significant impact on the estimated alpha and the estimated systematic

risk. The measurement errors will also upward (downxvard) bias perfor-

mance evaluation of portfolios (or assets). As a result, they can lead

to inconsistent ranking of the performance evaluation. However, judi-

cious choice of indices which have insignificant measurement errors can

yield an acceptable performance evaluation of portfolios (or assets).
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Appendix

(A). The derivation of equations (5) and (6):

Following equation (4) and Johnston (1972), the presumed model

associated with the measurement error on R ^ can be written as
mt

^jt
-

^zt
= =^3 ^ ^i^^Kt + ^ + n^^) - R^^3 + [sj, - gjCT + n,)]. (A.l)

To facilitate the analysis, (A.l) is reparametrized as

R.^ - R^^ = a* + 6.(y^^ + n^ - y^^) + [e.^ - Bj(t -h n,)]. (A. 2)

^mt = Kt - ^L> ^zt ^t - \' ^; = \where

and

Then, (A. 2) can be written in a matrix equation:

- n.

a* = a. + B.(R' +T + n - R )

.

2. = x3 + (£ - v3 )

,

(A.3)

where X' - (Rj3_ - R^^, Rj2 - ^22' •••» V "
^zn^*

1' = (a*. 3,),
J J

ri ^v + ^1 - v^

K =
1

^^m2
-^ ^2 - ^z2^

(nx2)
•

•

•

•

\i (y + n' - y )mn n ' zn

(nx2)

y^

T + n.
\

T + !!/

T + nn/

£. ~ ^^ji» ^j2' **' ^in^'
^"^"^
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( e_ - y§_) ±3 a column whose typical elenaent is [e. - B.(t + n^)],
t = 1, 2 n.

Jt 3
t

Thus, the least-squares estimator of _6_ in (A. 3) is

3 = e + (x'x)"-'-x'(e - v6).

where

/
1

\
(A.4)

(x'x)"^

t=l /
\

The estimate of 0. can be rewritten explicitly from (A.4) as follows;

'r'i*
t=l " -^

2: (y + n' - y )'

.^'mt 't ^zV

(A. 5)

Taking the probability limit of (A. 5), we have

m n z

Since 3, = plim 3. + s., then 3. can be rewritten as

'j «j - < lA
2 ^ 2 ^ 2^ "^ ^j •

m n z

(A. 5)

where s. indicates the sample variation of 3.. Equation (A. 5) is equation

(5). Similarly,

a. = (R.-R) -3.(R' +T + n-R)
J J z J m z
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= (R. - R ) - (plim e.+s.)(R'+T+n-R)
J z ^^ J J m z

-• - a + a + a
m n z

_ _ — _ _ _ ^
where a .

= (R. - R ) - 3 .
(R' + x + n - R ) , R. » I R^./n*

3 J z J m z J
t-^l

jt

Equation (A. 6) is equation (6).

(B) . The derivation of Equations (11) and (12)

:

Following equation (10) , the presumed model associated with the measure-

ment errors on R ^ and R ^ is
mt zt

R,^ - (R* + A + 6.) = a, + 6,[(R' + t + n ) - (R' + A + 6.)]jtzt tjjmt t zt t

+ [e^j. + (A + 6^) - 6j(t + n^. - a - 6^)] . (B.l)

The reparametrization of (B.l) gives

R., - (R* + A + 5^) = a** + 6.(y , + ni - Y , - <S')
jt zt t J J 'mt t zt t

+ [e^j. + (A + 6^) - e^(T + n^ - A - 6^.)], (B.2)

where a** = a^ + 0^ [(R^ + x + IT) - (P + A + ?) ] , y^^ = R^t '
^i*

_ _ n _ n
6' = 6^ - 6, R' = Z R' /n, and 6 = Z 6^/n.
t t ' z , zt , t

t=l t=l

Ihen, equation (B.2) can be written in a matrix form:

2* = ^j,* + (£ + u - v*e^) (B.3)

where ^* = a column vector whose typical element is [R - (R' + A + 5 )],
J t zt L.
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i*'
= (a**, 3^),

ji = a column vector whose typical element is (A + 5^),

A

X* =
(Y^ + ^y - ^^z2

-^ ^P

\' (y^ + n') - (y^ + 5!)mn n zn ^ y

r^ \
(t + n^L " '^ "

"^l^

(t + n2 - A - 6^)

k (t + n„ - A - 6 )/n n ^

and (^ +
Ji

- v*^*) is a column vector whose typical element is

[e . + (A + 6 ) - g.(T + n^ - A - 6 )]. Then, the least-squares estimator

of 6* in (B.3) is

J* = B + (x*'x*)"''"x*'(e + u - v*e*).

where

(x*'x*)"-'- =

/
1
n

\

k
^f.^^mt ^ ^t - ^zt - '?'y

(B.4)

(B.5)

Thus, the estimate, 3'., of 3. can be obtained from (B.4):

3'. = 3. + -Ell.

^ ^(^mt
-^

^l - ^zt - ^P^^jt ^ ^^ -^ V - ^j^^ + \ - A - 6^)

t=l

m2

(B.6)

Taking the probability limit of (B.6), we have
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(1 + 26.)cov(n.,6.) - 6.0^ - o^a+e.)

n-x" ->
J a + o + a,

m z 1

= 3j + *j, (B.7)

2 2
where Cov(nj^>6j^) = da , a. = Var(ri^ -

6^^) , and

oJ[d(l + 2B,) - e. - c(l + 6,)]

J 2 _^ 2 _^ 2

m z 1

then, e. = pllm g. +s. = 3. +ii». +s., (B.8)
J n-^ ^ J J J J*

which is equation (11). Following a similar analysis of obtaining equation

(A. 6) , we have

a'. = a^ +(ij;. - s.)(R' + t + n - R' - A - 6) , (B.9)

which is equation (12)

.
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